Land use planning for tsunami

Wendy Saunders, PhD, MNZPI Natural Hazards Planner

Introduction

- Legislative responsibilities for hazard management
- Existing guidance
- Risk based planning

GNS Science

Legislative context - five key statutes

- Resource Management Act 1991 (RMA)
- Building Act 2004
- Civil Defence Emergency Management Act 2002 (CDEMA)
- Local Government Act 2002 (LGA)
- Local Government Official Information & Meetings Act 1987 – LIMS

Similar purposes ...

Statue

Act 1991

Resource Management

Purpose

Promote the <u>sustainable management</u> of natural and physical resources ... managing the use, development, and protection of natural and physical resources in a way, or at a rate, which enables people and communities to provide for their <u>social, economic, and</u> <u>cultural wellbeing</u> and for their <u>health and safety</u>

Civil Defence Emergency
Management Act 2002Improve and promote the sustainable management of
hazards in a way that contributes to the social,
economic, cultural, and environmental well-being and
safety of the public and also to the protection of property

Building Act 2004 Buildings are designed, constructed, and able to be used in ways that promote <u>sustainable development</u> ... safeguard people from injury from critical fail

... Different definitions

Statue

Resource Management Act 1991

Civil Defence Emergency Management Act 2002

Building Act 2004

Definition

Any atmospheric or earth or water related occurrence (including earthquake, tsunami, erosion, volcanic and geothermal activity, landslip, subsidence, sedimentation, wind, drought, fire, or flooding) the action of which adversely affects or may adversely affect human life, property, or other aspects of the environment.

Something that may cause, or contribute substantially to the cause of, an emergency.

Erosion (including coastal erosion, bank erosion, and sheet erosion); falling debris (including soil, rock, snow, and ice); subsidence; inundation (including flooding, overland flow, storm surge, tidal effects, and ponding); and slippage.

Local Government Act 2002 As per RMA

Integrating natural hazard management

Sustainability vs resilience

- RMA focus on sustainability
- CDEM focus on sustainability AND resilience
 - Vision "Resilient New Zealand communities understanding and managing their hazards"
 - Ability to withstand, recover from and thrive after a disaster
- A resilient community is not necessarily a sustainable one
- A sustainable community should also be resilient
- Should the RMA include resilience?

New Zealand Coastal Policy Statement

- Tsunami specifically included
- Risk not just hazard
- Cumulative effects of coastal hazards
- Definition
 - Risk is often expressed in terms of a combination of the consequences of an event (including changes in circumstances) and the associated likelihood of occurrence (AS/NZS ISO 31000:2009 Risk management – Principles and guidelines, November 2009).

Legislative requirements under the CDEM Act 2002 for managing hazards

- To encourage and enable communities to achieve acceptable levels of risk including
 - Identifying, assessing and managing risks
 - Consulting and communicating risk
 - Identifying and implementing cost-effective risk reduction
 - Monitor and review

What is reduction?

Reduction is:

"identifying and analysing the long-term risks to human life and property from natural or non-natural hazards; taking steps to eliminate these risks if practicable, and, if not, reducing the magnitude of their impact and the likelihood of their occurring" (National CDEM Plan, 2005)

Risk reduction ... the role of the planner?

Figure 1.1: Linkage between national, regional and local operational plans and arrangements and risk reduction policies and programmes.

GNS Science

Interesting context

- In a recent study:
 - 7.2% of DPs & 25% of RPS's refer to CDEM Act.
 - 40% of council planning managers were unaware of CDEM plan risk reduction provisions
- EQC: When the CDEM Act requirements were formulated it was expected that RMA land use planning would be one of the tools (possibly the main one) that would be used to deliver against the CDEM Group Plan priorities.

RMA reforms: Six elements of reform package

Six elements of the proposed resource management system reform package (MFE, 2013, 33)

Natural Hazard Provisions – Part II Changes

- Combined s.6 and s.7
- Includes "the management of significant risks from natural hazards"
 - Introducing risk to the RMA
 - Elevating the consideration of natural hazards
 - Natural hazard risk would have to be considered as part of any RMA process
 - Natural hazard risks would have to be considered in appeals.
 - 'Significant risk' not defined

➤ Adding natural hazards to the principles of the RMA would lead to better consideration of natural hazards in planning and decisionmaking.

GNS Science

AEE & effects

- (a) Any positive or adverse effect; and
- (b) Any temporary or permanent effect; and
- (c) Any past, present, or future effect; and
- (d) Any cumulative effect which arises over time or in combination with other effects regardless of the scale, intensity, duration, or frequency of the effect, and also includes—
- (e) Any potential effect of high probability; and
- (f) Any potential effect of low probability which has a high potential impact.

An introduction to risk-based land use planning

Risk-based land use planning for natural hazard risk reduction

W.S.A. Saunders, J.G. Beban and M. Kilvington

GNS Science Miscellaneous Series 67

September 2013

What is risk-based planning?

- Based on international risk management framework
- Consistency between governance, buildings, land use
- Decisions based on *risk* rather than hazard
- Risk = consequence x likelihood
- Smarter development NOT no development

Why risk-based planning?

- Current approach resulting in an increase in risk
- RMA reforms
 - Decision makers required to manage significant risks from natural hazards (s6)
- NZCPS
- Christchurch
- "Acceptable level of risk"
 - What is it?
 - How do you measure it?

GNS Science

Why is it different from current practice?

- Focus on *risk* rather than *hazard*
- Consequence focused
 - Making meaning of likelihood
- Defines levels of risk based on well beings
- Encourages community engagement rather than consultation

The approach – a five step process

- 1. Know your hazard
- **2.** Determine severity of consequences
- 3. Evaluate likelihood of event
- 4. Risk-based approach to policy and resource consents
- 5. Monitoring & Evaluation
- Engagement strategy for each step

Relationship to risk management process

Step 1: Know your hazard

- Will inform policy, sets a baseline level of risk
- Tasks:
 - Scope scale & timing of planning decision
 - Identify team & resources needed
 - Review available hazard information, identify gaps, uncertainties and assumptions
 - Assess complexity of hazard/risk situation
 - Information management

Step 2: Determine consequences

Severity of	Built				Economic	Health &Safety
	Social/Cultural	Buildings	Critical Buildings	Lifelines		
Catastrophic (V)	≥25% of buildings of social/cultural significance within hazard zone have functionality compromised	≥50% of affected buildings within hazard zone have functionality compromised	≥25% of critical facilities within hazard zone have functionality compromised	Out of service for > 1 month (affecting ≥20% of the town/city population) OR suburbs out of service for > 6 months (affecting < 20% of the town/city population)	> 10% of regional GDP	> 101 dead
Major (IV)	11-24% of buildings of social/cultural significance within hazard zone have functionality compromised	21-49% of buildings within hazard zone have unconality creations	11-24% of buildings within hazard zone have functionality compromised	Out of service for 1 week – 1 month (affecting > 00% of the town/city population) O	1-9.99% of	11 – 100 dead and/or 101 – 1000 injured
Moderate (III)	6-10% of buildings of social/consignificance within book I zone have functionality compromised	11-20% of buildings within hazard zone have functionality compromised	6-10% of buildings within hazard zone have functionality compromised	Out of service for 1 day to 1 week (affecting ≥20% of the town/city population people) OR suburbs out of service for 1 week to 6 weeks (affecting < 20% of the town/city population)	0.1-0.99% of regional GDP	2 – 10 dead and/or 11 – 100 injured
Minor (II)	1-5% of buildings of social/cultural significance within hazard zone have functionality compromised	2-10% of buildings within hazard zone have functionality compromised	1-5% of buildings within haze to be have function nality complexities provided the second	Out of service for 2 hours to 1 day (affecting ≥20% of the town/city population) OR suburbs out of service for 1 day to 1 week (affecting < 20% of the town/city population)	0.01-0.09 % of regional GDP	<= 1 dead and/or 1 - 10 injured
Insignificant (I)	No buildings of social/cultural significance within hazard zone have functionality compromised	< 1% of affected buildings within hazard zone have functionality compromised	No damage within hazard zone, fully functional	Out of service for up to 2 hours (affecting ≥20% of the town/city population) OR suburbs out of service for up to 1 day (affecting < 20% of the town/city population)	<0.01% of regional GDP	No dead No injured

Step 3: Evaluate likelihood

Level	Descriptor	Description	Indicative frequency
5	Likely	The event may occur several times in your lifetime	Up to once every 50 years
4	Possible	The event might occur once in your lifetime	Once every 51 – 100 years
3	Unlikely	The event does occur somewhere from time to time	Once every 101 - 1000 years
2	Rare	Possible but not expected to occur except in exceptional circumstances	Once every 1001 – 2,500 years
1	Very rare	Conceivable but highly unlikely to occur	2,501 years plus

Step 4: Determining levels of risk

	Consequences				
Likelihood	1	2	3	4	5
5	5	10	15	20	25
4	4	8	12	16	20
3	3	6	9	12	15
2	2	4	6	8	10
1	1	2	3	4	5

Risk	Level of risk	Consent	
1-4	Acceptable	Permitted	
5-9	Acceptable	Controlled	
10-14	Tolerable	Restricted Discre	etionary
15-19	Tolerable	Discretionary	
20-25	Intolerable	Non complying,	prohibited

Step 5: Monitor & review

- Evaluate risk reduction effectiveness
 - Policies
 - Consents
- Evaluate acceptance of control options, residual risks & long term outcomes

Home / RBP / Risk based planning / A toolbox

Risk based planning

<u>A toolbox</u> Project background Setting the Scene Risk-based planning approach and steps Examples

Assumptions,

uncertainties Site map

Feedback

imitations and

This toolbox aims to support risk-based land use policy and plan development in local government. It offers a new approach where consequences of natural hazard events are the focus. It presents techniques, practice steps and options for enabling local government to review multiple natural hazard risks, both within councils and with external stakeholders.

The toolbox is presented in three key themes:

- · setting the scene for why this approach is important;
- · the five step risk based approach for natural hazards and;

A toolbox for risk based land use planning for natural hazards

· examples of implementation.

This toolbox is offered as a resource and guide, and is not intended as a prescription or as an off-the-shelf solution to successful management of natural hazards.

- · Site Index a full index of the guide
- · What this toolbox does and does not do the limitations and assumptions of the approach
- Full report can be downloaded here -
- MS67_Riskbased_planning_report.pdf 3.32 MB
- <u>About the project</u> background to the project and developers
- . Feedback this toolbox will continue to evolve, so let us know what you think, or your experience of using the toolbox

http://www.gns.cri.nz/Home/RBP/Risk-based-planning/A-toolbox

Toolbox available

Options for land use planning

- Protection of evacuation routes
- Critical facilities, schools etc
- Greenfield vs brownfield development
- TCDC, CC RDP, BOP
- Avoidance zones ... other coastal hazards, climate change

Guidance available

- Risk based land use planning (GNS, 2013)
- Defining coastal hazard zones for setback lines (NIWA, 2011)
- New Zealand's Next Top Model (GNS, 2011)
- Coastal hazards & climate change (NIWA, 2008)
- Managed retreat from coastal hazards: options for implementation (EW, 2006)
- Seven principles for planning and designing for tsunami (US, 2001)

GNS Science

Riskscape

- Joint venture between GNS Science & NIWA
- Tool for analysing risks & impacts from hazards
 - damage and replacement costs, casualties, economic losses, infrastructure and business disruption, number of people affected
 - Earthquakes, flooding (river), tsunami, volcanic ashfall, windstorm
- <u>https://riskscape.niwa.co.nz/</u>

Issues / Challenges / Opportunities

- Hazard versus risk
- Risk to what? Whom?
- Tsunami a RMA or CDEM issue?
- RMA reforms are other changes or guidance needed?
- Multi hazard approach
- Politics ...
- Smarter development NOT no development