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EXECUTIVE SUMMARY 

In this report we have examined all likely sources of tsunami that could affect New Zealand, 
and evaluated their potential to generate tsunami, the likely waves produced, and the likely 
size of tsunami at the New Zealand coast. This review builds on the 2005 Review of Tsunami 
Hazard and Risk in New Zealand, and summarises the current state of knowledge, 
highlighting the results of new research and changes in scientific understanding between 
2005 and 2013. A substantially revised probabilistic hazard model has been constructed for 
this report, which for the first time estimates the tsunami hazard for all parts of the New 
Zealand coastline. 

This report focuses on quantifying tsunami hazard, i.e., the likely size of tsunami for specified 
timescales, along with estimates of uncertainty. It does not provide estimates of risk, i.e., 
expected costs of damage and numbers of casualties. Every effort has been made to assign 
realistic parameters for seismic tsunami sources in terms of their likely earthquake 
magnitudes and frequencies, but there are large uncertainties. Our probabilistic method 
incorporates these uncertainties throughout the analysis, so that the results contain realistic 
‘error bars’. 

The hazard posed by tsunami generated by landslides and volcanic activity has been 
carefully considered. At this time it has not been possible to quantify the hazard from these 
sources, though research work towards this goal is being undertaken. For most parts of 
New Zealand, the hazard posed from these tsunami sources on time frames of up to 2500 
years is considered secondary to the hazard from earthquake-generated tsunami. This is 
consistent with the global experience of tsunami, in which relatively few events in the 
instrumental era have been attributed to landslide and volcanic sources relative to the 
number of earthquake-generated tsunami. 

The 2011 Tohoku tsunami in Japan illustrates some of the key changes in scientific 
knowledge since 2005. That event was the latest in a sequence, starting with the 2004 Indian 
Ocean tsunami and the subsequent 2009 South Pacific tsunami, that were produced by 
earthquakes substantially larger than had been considered likely to occur at those locations. 
These earthquakes contradicted previous geophysical assumptions about the maximum 
magnitudes of earthquakes that could be created on tectonic plate boundaries. There are 
now far fewer restrictions on possible maximum magnitudes than was previously thought to 
be the case, and the new probabilistic model attempts to account for this. It is now known 
that there was a similar tsunami in Japan in AD 869, indicating that the interval between the 
largest earthquakes there is over a thousand years. The tectonic plates in Japan are 
converging twice as fast as those around New Zealand, which suggests that the interval 
between the largest earthquakes on our local plate interfaces could be in excess of two 
thousand years. The important implication here is that our brief historical record of 200 years 
can, on its own, provide very little guidance in estimating the magnitude of the largest 
earthquakes that New Zealand may experience. 

To improve estimates of the earthquake potential of subduction plate interfaces around New 
Zealand, where one plate is pushed below another, we must study the evidence of 
prehistoric tsunami and earthquakes (paleotsunami and paleoearthquakes) in the geological 
record, and work with the global community to find new, statistically valid, geophysical 
estimates. 
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The movement between the tectonic plates in the Tohoku tsunami was very non-uniform—in 
some areas the plates moved more than 50 metres whereas in many other areas the 
movement was much less, typically around 5 to 10 metres. This ‘non-uniform slip’ has 
important implications for tsunami, as the distribution of movement between the plates 
affects the motion of the seabed, which determines the size of tsunami. The probabilistic 
model in this report attempts to incorporate the effects of this phenomenon to a first level of 
approximation; this is at the cutting-edge of current science and the analysis represents a 
first attempt at tackling this important problem. 

The greater uncertainty that now exists regarding the maximum size of earthquakes on plate 
boundaries close to New Zealand, has led to an increase in the estimated hazard from 
tsunami triggered by local and regional sources. While for most parts of New Zealand the 
overall levels of tsunami hazard have not changed greatly from the assessed hazard levels in 
the 2005 report, the estimated hazard has generally increased in those areas most exposed 
to tsunami from local subduction zones – notably the east-facing coasts of the North Island, 
and the southwest corner of the South Island. 
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1.0 INTRODUCTION 

1.1 SCOPE OF THIS REPORT 

Following the disastrous tsunami in the Indian Ocean on December 26, 2004 the 
New Zealand Government resolved to consider the risk of such events in New Zealand. The 
Ministry of Civil Defence & Emergency Management commissioned a report from the 
Institute for Geological and Nuclear Sciences (now GNS Science) to answer this question. 
The report “Review of Tsunami Hazard and Risk in New Zealand” was compiled by Kelvin 
Berryman and completed in 2005. 

In the period between 2005 and 2012 much research has been undertaken on the subject of 
New Zealand’s tsunami hazard. A new report was commissioned by the Ministry of Civil 
Defence & Emergency Management to update the findings of the original 2005 report with 
this new information. The new report builds upon the findings and structure of the original. 
Like the original it represents the work of many scientists, and it directly incorporates material 
from the original report where the present understanding is unchanged. 

This report is a synthesis of available data on the hazard of distant, regional and local 
tsunami in New Zealand. It includes summaries of geologically and historically derived 
information on the occurrence of tsunami, and of numerical modelling studies. A revised 
probabilistic model of tsunami hazard has been developed for this report which incorporates 
new information on tsunami sources resulting from studies since 2005. It also differs from the 
2005 hazard model by developing hazard estimates for the entire coast, not only the major 
cities. 

Estimates of expected casualties and damage costs have not been included in this report. It 
is anticipated that the Riskscape project (see Section 2.4.4.2) will use the tsunami hazard 
model developed here to produce revised estimates of tsunami risk. 

1.2 CONTRIBUTORS 

Many people have worked on this project. The project also draws heavily on the 2005 report, 
particularly in the area of tsunami sources. The following researchers are acknowledged for 
their contribution to writing the following chapters of this report: 
Introduction (2013 update): William Power 1 
Tsunami Impacts: Stefan Reese2, 3 
Historical and pre-historical tsunami databases: Kate Clark1 
Tsunami Modelling: Xiaoming Wang1, William Power1 
Tsunami Sources (2013 update): Laura Wallace1, 4, William Power1, Joshu Mountjoy2 
Probabilistic Modelling: William Power1, Joshu Mountjoy2 
Discussion and Conclusions: William Power1 

                                                
1 GNS Science 
2 NIWA 
3 SwissRe 
4 University of Texas 
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The following are additionally acknowledged for their scientific contribution to this report in 
the following areas: 

Tsunami Sources: Philip Barnes2, Kelvin Berryman1, Nicola Litchfield1, Andy Nicol1, 
Martin Reyners1, Aggeliki Barberopoulou1, Stuart Fraser1, 5 

Probabilistic Modelling: Christof Mueller1, Stuart Fraser1,5, Biljana Lukovic1 

The following are additionally acknowledged for their contributions to the 2005 report on 
which this report draws: 

Warwick Smith1, Mark Stirling1, David Heron1, Gaye Downes1, Ursula Cochran1, 
Willem de Lange6, James Goff1, 7, Scott Nichol8, Roy Walters2, Terry Webb1, 
Russell Robinson1, John Beavan1, Rob Langridge1, Geoffroy Lamarche2, Arne Pallentin2, 
Mauri McSaveney1, Nick Perrin1, Ian Wright2, Alistair Barnett9, Doug Ramsay2, Jim Cousins1, 
Andrew King1. 

Project management was provided by: Ursula Cochran1 and Hannah Brackley1, and 
document editing and preparation by: Eileen McSaveney1 and Kat Hammond1. Reviewing 
was performed by Emily Lane2, David Burbidge10 and Kenji Satake11. 

1.3 STRUCTURE OF THE REPORT 

In this Chapter 1 we briefly describe the structure of the report, what tsunami are, how they 
are generated, and what damage they can do. Chapter 2 describes the impacts of tsunami 
and how they may be quantified to evaluate tsunami risk. In the following chapter on 
historical and paleotsunami (Chapter 3) we present the current state of knowledge about 
tsunami that have occurred in our relatively recent recorded history and earlier tsunami that 
have left evidence in the form of sedimentary deposits. 

Chapter 4 describes techniques for numerical modelling of tsunami, and summarises 
modelling work that has been done for New Zealand. Chapter 5 on Tsunami Sources 
characterises the set of possible causes of tsunami, whether generated by earthquake, 
landslide, volcano or bolide impact, and whether this occurs close to New Zealand or far 
overseas. 

A nationwide model of tsunami hazard was developed for this report. The model, the input 
data it uses, and the results it produces are the subject of Chapter 6. Finally in Chapter 7 
there is a discussion about the findings of the report and conclusions are drawn, including a 
series of recommendations for further research. 

 

                                                
5 Massey University 
6 Waikato University 
7 University of New South Wales 
8 University of Auckland 
9 Barnett & McMurray Ltd 
10 Geoscience Australia 
11 Earthquake Research Institute, University of Tokyo 



Confidential 2013 

 

GNS Science Consultancy Report 2013/131 3 
 

1.4 WHAT IS A TSUNAMI? 

A tsunami is a natural phenomenon consisting of a series of waves generated when a large 
volume of water in the sea, or in a lake, is rapidly displaced. Tsunami are known for their 
capacity to violently inundate coastlines, causing devastating property damage, injuries, and 
loss of life. The principal sources of tsunami are: 

• large submarine or coastal earthquakes (in which significant uplift or subsidence of the 
seafloor or coast occurs) 

• underwater landslides (which may be triggered by an earthquake, or volcanic activity) 

• large landslides from coastal or lakeside cliffs 

• volcanic eruptions (e.g., under-water explosions or caldera collapse12, pyroclastic 
flows13 and atmospheric pressure waves) 

• meteor (bolide) splashdown, or an atmospheric air-burst over the ocean. 

In a tsunami, the whole water column from the ocean floor to its surface is affected, the initial 
disturbance creating a series of waves radiating outwards, until the waves either dissipate or 
collide with a shoreline. Tsunami waves can arrive at nearby shores within minutes, or travel 
across the deep ocean basins at speeds in excess of 500 kilometres per hour (km/hr). Very 
large sources (disturbances) are required to cause tsunami that are damaging at great 
distances from the source. For example, the 1960 magnitude14 (M) 9.5 Chile earthquake, 
which had a rupture length of several hundred kilometres, produced a 25 metre (m) high 
tsunami locally, over 10 m in Hawaii, and nearly 4 m in New Zealand. On the other hand, 
tsunami that are generated locally do not need such a large source to be large and damaging 
at nearby shores. For example, the 1947 M7.1 earthquake off Gisborne affected 120 km of 
coastline, with a tsunami of 10 m maximum height occurring along tens of kilometres of coast 
north of Gisborne. 

The amplitude of tsunami waves15 in deep water is generally less than one metre, producing 
only a gentle rise and fall of the sea surface that is not noticed by ships, nor able to be seen 
by aircraft, although new satellites with sea-surface elevation technology can detect large 
tsunami in the deep ocean. When tsunami waves reach shallower waters, their speed 
decreases rapidly from their deep-ocean values, and at the same time their height increases 

                                                
12 CALDERA COLLAPSE refers to the formation of a large depression when the underlying magma chamber of a 

volcano collapses during or following an eruption or explosion. The collapsed caldera is a crater-shaped 
depression which may be many hundreds of square kilometres in area, and many hundreds of metres deep. 
The collapse needs to occur suddenly to cause a tsunami. 

13 A PYROCLASTIC FLOW is a ground-hugging avalanche of hot ash, pumice, rock fragments, and volcanic gas that 
rushes down the side of a volcano at hundreds of km/hr, and can have temperatures greater than 500°C. In a 
coastal setting, such flows cause tsunami when they enter the sea. Pyroclastic flows can also occur from 
underwater volcanoes. 

14  The MAGNITUDE of an earthquake is a measure of its energy. There are several methods for estimating the 
magnitude, which often give slightly different results. At present the most widely used form of the magnitude is 
the moment magnitude Mw. In this report M is used to signify an approximate generic magnitude in situations 
where there is significant uncertainty; this is often the case when discussing earthquakes that occurred before 
the instrumental era. 

15 TSUNAMI HEIGHT (m) is the vertical height of waves above the tide level at the time of the tsunami (offshore it is 
approximately the same as the AMPLITUDE). It is far from constant, and increases substantially as the wave 
approaches the shoreline, and as the tsunami travels onshore.The term “WAVE HEIGHT” is also often used, but 
there is a potential ambiguity as many scientists define WAVE HEIGHT as the peak-to-trough height of a wave 
(approximately twice the amplitude). Note that this is a change in terminology from the 2005 Tsunami Hazard 
and Risk Review, intended to bring greater consistency with international usage of these terms. 
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(as the front of each wave slows down and the back of the wave, which is moving faster, 
catches up on the front, piling the water higher). A tsunami wave that is only half a metre 
high in the open ocean can increase to a devastating 10 m high wave travelling at 10-40 
km/hr at impact with the shore. 

Tsunami waves differ from the usual waves we see breaking on the beach or in the deep 
ocean, particularly in the distance between successive waves, because tsunami waves 
occupy the whole ocean depth and not just the top few tens of metres as in storm waves. 
Both of these factors contribute to the huge momentum of water in a tsunami at the coast. 
The distance between successive tsunami waves (called wavelength) can vary from several 
kilometres to over 400 km, rather than around 100 metres for normal waves at the beach. 
The time between successive tsunami wave crests (called period) can vary from several 
minutes to a few hours, rather than the few seconds usual for beach waves. Hence, when 
tsunami waves reach the shore, they continue to flood inland over many minutes, and then 
the waves may retreat over as many minutes, before the arrival of the next wave. The waves 
may come in at irregular intervals, often without complete withdrawal of the inundating water 
from previous waves due to retardation of the outflow and impoundments. The first wave to 
arrive may not be the largest wave. 

New Zealand’s location astride a plate boundary means that it experiences many large 
earthquakes. Some cause large tsunami. New Zealand’s coasts are also exposed to tsunami 
from submarine and coastal landslides, and from island and submarine volcanoes. In 
addition, tsunami generated by large earthquakes at distant locations, such as 
South America, or western North America and the Aleutians in the north Pacific Ocean, can 
also be damaging in New Zealand. 

Tsunami with run-up heights16 of a metre or more have occurred about once every 10 years 
on average somewhere around New Zealand, a similar frequency to Hawaii and Indonesia, 
but about one third that in Japan. Smaller tsunami occur more frequently, the smallest of 
which are only detectable on sea-level recorders. 

New Zealand can expect tsunami in the future. Some coasts are more at risk than others 
because of their proximity to areas of high local seismic activity, or exposure to tsunami from 
more distant sources. No part of the New Zealand coastline is completely free from tsunami 
hazard. 

                                                
16 TSUNAMI RUN-UP (m), a measure much used in tsunami-hazard assessment, is the elevation of inundation 

above the instantaneous sea level at the time of impact at the farthest inland limit of inundation. This measure 
has a drawback in that its relationship with the amplitude of the waves at the shore depends markedly on the 
characteristics of waves and on the local slopes, vegetation, and buildings on the beach and foreshore areas, 
so it is highly site-specific. 
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1.5 WHAT DAMAGE DOES A TSUNAMI DO? 

Tsunami damage and casualties are usually from four main factors (see also Table 1.1 and 
further discussion in Chapter 2): 

• Impact of swiftly-flowing torrent (up to 40 km/hr), or travelling bores17, on vessels in 
navigable waterways, canal estates and marinas, and on buildings, infrastructure and 
people where coastal margins are inundated. Torrents (inundating and receding) and 
bores can also cause substantial erosion both of the coast and the sea-floor. They can 
scour roads and railways, land and associated vegetation. The receding flows, or “out-
rush”, when a large tsunami wave recedes are often the main cause of drowning, as 
people are swept out to sea. 

• Debris impacts—many casualties and much building damage arise from the high 
impulsive impacts of floating debris picked up and carried by the in-rush (inundating) 
and out-rush (receding) flows. 

• Fire and contamination—fire may occur when fuel installations are floated or breached 
by debris, or when home heaters are overturned. Breached fuel tanks, and broken or 
flooded sewerage pipes or works can cause contamination. Homes and many 
businesses contain harmful chemicals that can be spilled. 

• Inundation and saltwater-contamination by the ponding of potentially large volumes of 
seawater will cause medium- to long-term damage to buildings, electronics, fittings, 
and to farmland. 

  

                                                
17 Tsunamis often form bores in harbours, man-made waterways, and in coastal rivers and streams. A bore can 

be a smooth or turbulent, non-breaking step-like increase in water height resulting in wall-like change in water 
levels from normal to some higher level. They can travel 3 or more kilometres up a river with the water many 
metres above the normal level, sometimes well over the bank height, causing damage to bridges and 
wharves, and causing water to flood nearby flat areas. 
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Table 1.1 Summary of damage that can be caused by tsunami waves. 

People and animals Built environment Natural environment Shipping 

• Washed off feet 

• Drowned, especially in 
out-wash 

• Injured by debris or 
impact with structures 

• Skin may be removed 
by the “sand-blast” 
effect of suspended 
particles 

• Injury/illness due to 
contact with 
contaminated water 

• Damaged by 
inundation and 
deposition of sand 

• Damaged by floating 
debris (including cars 
and boats) 

• Wooden buildings 
floated and damaged 

• Reinforced concrete 
buildings damaged 
(with on-land water 
levels of 4m+) 

• Reinforced buildings 
badly damaged (with 
on land water levels of 
10m+) 

• Coastal wharves, 
coastal defences 
(seawalls/gabions) 
and bridges damaged 
or destroyed 

• Riverside wharves and 
bridges damaged or 
destroyed 3 km or 
more upstream by 
bores 

• Walls, fences, road 
surfaces, 
power/telegraph poles 
damaged or destroyed 

• Oil spills from 
overturned vehicles, 
heaters or floated 
storage tanks, with 
consequent fire 
danger 

• Aqua-culture rafts, etc. 
damaged 

• Sewerage systems 
obstructed, or 
damaged, with 
consequent 
contamination 

• Erosion or deposition 

• Trees snapped or 
uprooted 

• Long-term sea-water 
contamination effects 
(salt) 

• Sewage contamination 

• Fish and shellfish 
thrown ashore, with 
consequent 
contamination 

• Disturbance, siltation, 
contamination of the 
near shore marine 
environment with 
subsequent reduction 
in fish stocks  

• Ship and boat damage 
by impact with 
wharves, breakwaters 
or other boats 

• Ship and boat damage 
by complete 
withdrawal of water, or 
too rapid a return of 
water to allow floating 

• Ships and boats torn 
from moorings and 
thrown on shore 

• Buoys moved 

• Channels altered by 
scouring and 
deposition 

• Shipping lanes littered 
with floating debris 

• Oil spills from 
overturned boats and 
wharf installations with 
consequent fire 
danger 

• Port and marina 
docking facilities and 
breakwaters 
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