

Level of Service Performance Measures for the Seismic Resilience of 3 Waters Network Delivery

Greg Preston, Quake Centre Phil McFarlane, Principal Engineer - Water Asset Management, Opus

Conservative estimates of the damage to Canterbury's 3 Waters Network

- Potable water NZ\$ 100 million
- Storm water NZ\$ 800 million
- Waste water NZ\$ 1 Billion

NZ's estimated 3 waters renewal value

As of 2014, estimated renewal value:
 NZ\$45.2 billion.

Aim of today's presentation

- To introduce the Level of Service Performance Measures for the Seismic Resilience of 3 Waters Network Delivery Guidelines
- To discuss how they might be used
- Propose a series of workshops around NZ

Purpose of the guidelines

To provide a framework to define the current or potential operating stage of any part, or parts, of a 3 waters network in the event of, or planning for, a significant earthquake.

Why are the guidelines important?

The guidelines help you and your community build resilience into 3 Waters Infrastructure by allowing a realistic discussion on:

- The risks the community carries
- What LoS can and cannot be expected if a seismic event occurs
- Capital investment choices
- Maintenance decisions
- Insurance
- Other mitigation strategies

Conting Resilient Communities

Three specific uses

- 1. A communication tool to explain the network status to communities and their leaders.
- An aid to tracking recovery to normal Levels of Service after damage caused by a seismic event.
- A management tool to assist engineers and asset managers explain the investment needs to improve the resilience of networks.

Consulting with the community – an iterative process

- Define desired levels of service (these guidelines)
- Assess system vulnerability (where and how system will be affected)*
- · Estimate restoration times*
- · Identify where levels of service are not met
- Identify and prioritise system improvements and investments*
- · Consult with affected community reassess desired levels of service -

Key elements

Key elements of the LoS Measures are:

- The operational stage
- Service aspect
- Community measures
- Critical community services

Operating stages

Four operating stages are defined

Full: As, or better than, pre-event

Operational: Near normal service delivery but with notifiable outages and

significantly increased operating costs

Survival: Controlled services but limited and with significant disruption

Emergency: Services may be completely disrupted and uncontrolled

Earthquake

Operating stages

It is important to begin by defining what is meant by **FULL** Level of Service.

It is only when the full level of service is understood that the lesser levels can be defined.

- Does your community understand what is currently delivered?
- Is this an acceptable Level of Service?

Service aspects – Potable and Fire

Potable Water

- quality
- quantity

Fire Protection

Service Aspects - Wastewater

- Wastewater collection
 - Within property
- Wastewater conveyance
 - Public, in the streets
 - Pipes, manholes. Etc.
- · Wastewater treatment and disposal
 - Public, at treatment plant and beyond

Service aspects - Storm water

- Storm water collection
 - off property
- Storm water containment
 - flood protection
- Storm water treatment
- Storm water disposal

Community measures – Waste water

Wastewater collection	 Full Unimpeded use of toilet and other wastewater disposal sources (e.g. bathroom, kitchen)
Wastewater conveyance	 No leakage or odours during dry weather. Number of wet weather overflows is below the agreed containment standard.

Community Measures – Waste Water

	Operational				
Wastewater	Normal toilet function at most times. May be				
collection	limited in wet weather				
	 Possibly some leakage into ground 				
Wastewater	 No overflows to waterways during dry weather 				
	, , ,				
conveyance	but more wet weather overflow than the				
	agreed containment standard.				
	 Higher than normal flows in the sewers 				
	 No objectionable odours 				
	 Higher operating costs 				

Community Measures – Waste Water

Wastewater collection	 Survival Provision of temporary systems, i.e., portaloo, chemical toilets or pump-out provided by council
Wastewater conveyance	 Controlled overflows to waterways during dry weather; uncontrolled discharges during wet weather Objectionable odours

Community Measures – Waste Water

	Emergency					
Wastewater	No or very limited service on property					
collection	Possibly toilet dug in garden by home owner					
	Blowbacks on properties					
	Objectionable odours					
Wastewater	Uncontrolled overflow from pipes, manholes or					
conveyance	pump stations; to waterways or onto private property.					
	 Sewage in street at times 					
	Discharges into waterways during dry and wet					
	weather					
	 Objectionable odours. 					

Critical services

These are community services that the 3 Waters systems serve, e.g.:

- Emergency services
- Hospitals
- Aged care facilities
- Etc.

There is a hierarchy of critical services. The hierarchy may change as the recovery progresses

Components of a LoS target

Target LoS =

- + Service aspect
- + Operational stage
- + Location
- + Criticality
- + Duration
- +% of region

Output Levels of Service

LoS Purpose	Amount Quantity	Location or User Supplied	Duration until LoS provided	% City
Firefighting	SNZ PAS 4509:2008	Priority locations	•	All

Notes:

Priority locations for providing post event firefighting supplies need to be agreed with the Fire Service, Civil Defence Emergency Management Group and water service providers



What else is needed?

Restoration curves

Next steps

- 1. A pipe network renewals workshop:
 - a) Understanding current work programmes
 - b) Coordinating future needs and workstreams
- 2. LoS Workshop series:
 - a) Two-three hour exercise to identify key extent of likely damage
 - b) Application of Operating Stages and LoS templates
 - c) Local collation of required information required
 - d) Coordinated by lifelines groups?

Conclusion

- Using Levels of Service to drive resilience improvements
- Using the LoS guidelines as planning tools for:
 - Functional responses to improved resilience
 - Investment planning to improve resilience
 - Engaging the community in the resilience discussion

Guidelines can be found on the home tab of the Quake Centre's website or the Water NZ website.

Questions?

Acknowledgements

- Peter Whitehouse, Water New Zealand
- Philip MacFarlane, Opus Research
- · David Heiler, CH2M Beca Ltd
- · David Brunsdon, Kestrel Consulting
- · Brian Park, Watercare
- · Ian McSherry, Wellington Water
- · Kristin Aitken, Wellington Water
- · Rod Cameron, SCIRT
- Sonia Giovinnazi, University of Canterbury
- Francesco Cavalieri, University of Rome
- · Warren Ladbrook, CERA
- Indranil Kongar, University College London
- Melanie Liu, University of Canterbury
- · Richard Hunt, Sigma Consultants Limited
- Richard Mowll, Wellington Lifelines
- Mark Milke, University of Canterbury
- Mark Christison, Beca Ltd

UC QUAKE CENTRE

Quake Centre Partners

