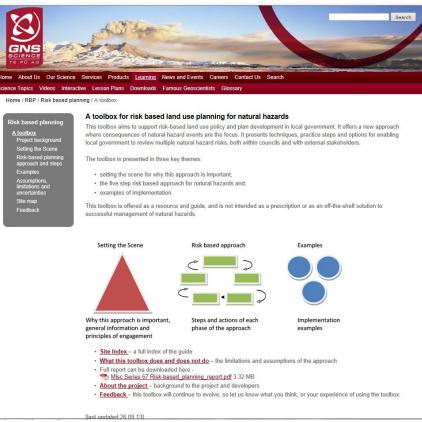
Natural Hazards Research Platform

A multi-party research platform funded by Government dedicated to increasing New Zealand's resilience to Natural Hazards via high quality collaborative research

Infrastructure Theme Leader

roger.fairclough@neoleafglobal.co.nz

November 2013


Facilitate cooperation, collaboration and co-ordination between researchers Increased linkage of research with practitioners

Key NZ Research Activities

- " Update from the Natural Hazards Research Platform
- *Economic Modelling Tony Fenwick*
- *["]* The Resilience of Ports Liam Wotherspoon, University of Auckland
- Projecting Damage and Losses for Building and Infrastructures from the Canterbury Earthquake Sequence - Sonia Giovinazzi, University of Canterbury
- *Earthquake-Flood Multi-hazard Impacts on Lifeline Systems Sonia Giovinazzi, University of Canterbury*
- *Resilience for Lifeline Utilities Erica Seville, Resilient Organisations*

Natural Hazard Risk-Based Toolbox Available to use

- Wendy Saunders, GNS (w.saunders@gns.cri.nz)
- Toolbox to support natural hazard riskbased land use policy and plan development in local government.
- Developed with planners, it offers an approach that focuses on the consequences of natural hazard events (including those to lifelines and critical buildings).
- Highlights include how to incorporate community engagement processes; a riskbased district plan chapter; and national and international examples.
- The toolbox and full report is available at: <u>http://www.gns.cri.nz/Home/RBP/Risk-</u> <u>based-planning/A-toolbox</u>

Interdependencies of Critical Lifelines and Infrastructure

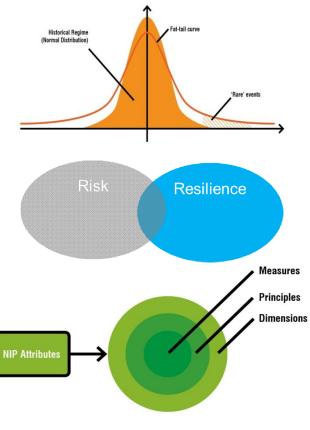
- Rob Buxton, GNS (<u>r.buxton@gns.cri.nz</u>)
- Developing models to minimise post-earthquake trauma and economic impact for people in urban areas
- Interdependencies examples Florida Hurricanes 2004:
 - Energy shortage closing of ports disrupted supply of petrol, coal and emergency supplies
 - Communications cooling water supplies cut off shutting down telecommunications in turn disrupting repair crews
 - Electricity impacted communications, transportation (rail and traffic signalling systems failed)
 - . Electricity impacted water and waste water, pumping stations and treatment plants

(American Lifelines Alliance)

Picture: Metropolitan Transport Authority (New York)

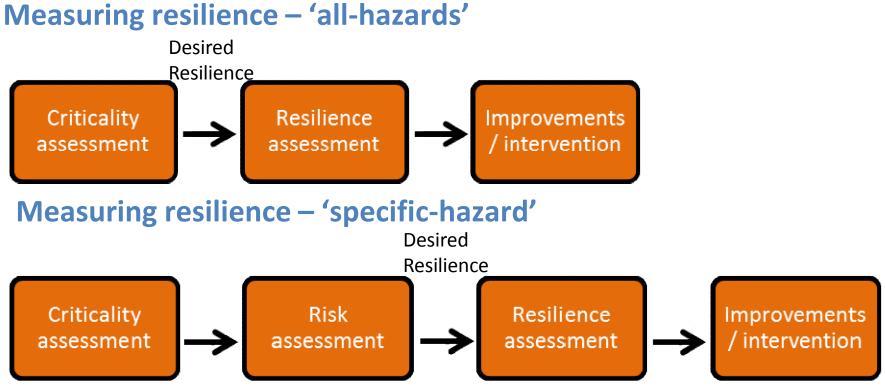
Current Status

- Scoping Study (Completed):
 - Aim to research the possible approaches for modelling interdependencies
 - . Literature review, concentrating on "codeable" approaches that could be implemented as a system
 - Agent-based simulations, scalable multi-graphs, BBNs and input-output inoperability models were considered
 - . Napier used as study area for proof of concept.
 - . Findings published GNS Science Report 2011/19
- " Future:
 - . Advisory Group established
 - Complete current model development
 - . An interdependencies data collection framework (crossover with Economics of Resilient Infrastructure)
 - . Alternative visualisation techniques (3d)
 - . Develop methods for modelling reinstatement strategies
 - Modify model approach to include societal impacts from organisational outages
 - . Support to Lifelines activities



Measuring Resilience of Transport Infrastructure

James Hughes, AECOM (<u>james.hughes@aecom.com</u>) Kristina Healy, AECOM



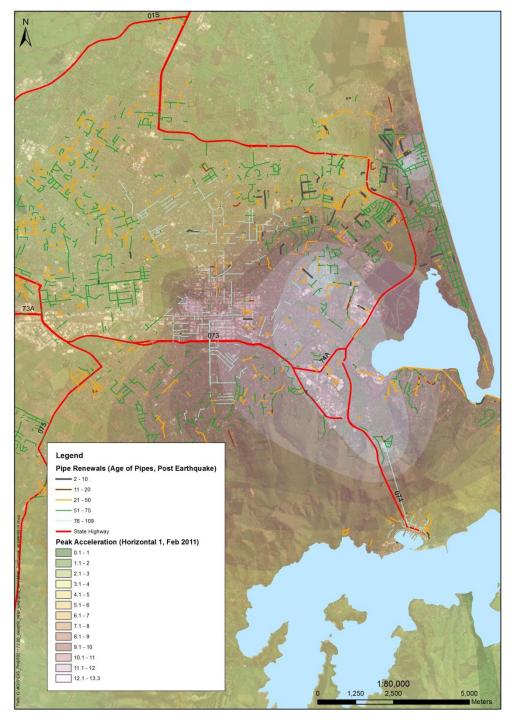
Findings:

- Hazards: a range of types, shock and stress events, and level of predictability (probable, possible, plausible). 'All hazards' vs 'specific hazard'. Complex failure modes. Black swans.
- Risk management approaches alone are insufficient. Move 'beyond risk' to consider consequence scenarios.
- Framework developed across key dimensions of technical and organisational resilience
- . A measurement tool was developed across a range of principles that is able to assess the resilience of **regions**, **networks** or **specific assets** and enable prioritisation of improvements.

Reflections on recent international research

- ["] Resilience in engineering systems is a characteristic of how the system behaves (process), as opposed to a property that the system has (state).
- Due to the unpredictability of complex systems, a resilience assessment demands a constant, recursive process, often across multiple organisations.
- *A resilience assessment requires recognition of incompleteness:* inherent uncertainty and incompleteness in our knowledge
- *New approaches to design:* embrace uncertainty and failure via anticipation and adaptation
- A traditional risk-based approach is not sufficient to understand, plan and prioritise resilience improvements.

Next steps:

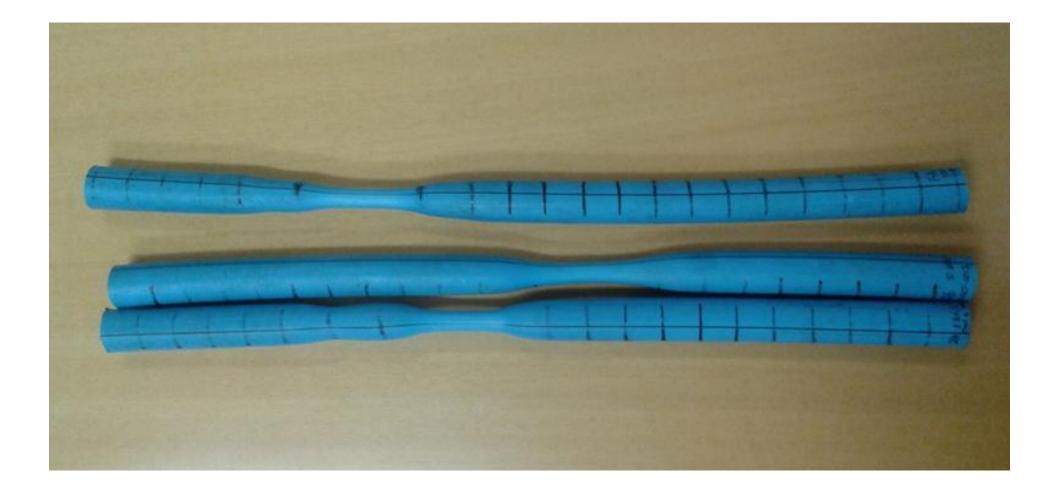

- ["] NZTA project in final stages
- Assessment tool which can be applied to understand and prioritise resilience efforts and investment
- " But there are gaps:
 - ⁷ How do we design for resilience?
 - " How much do we spend on resilience?
 - Which pieces of infrastructure should be resilient? (link to criticality)
 - Understanding relationship between resilience and sustainability

Seismic Response of Underground Services (& National Implications)

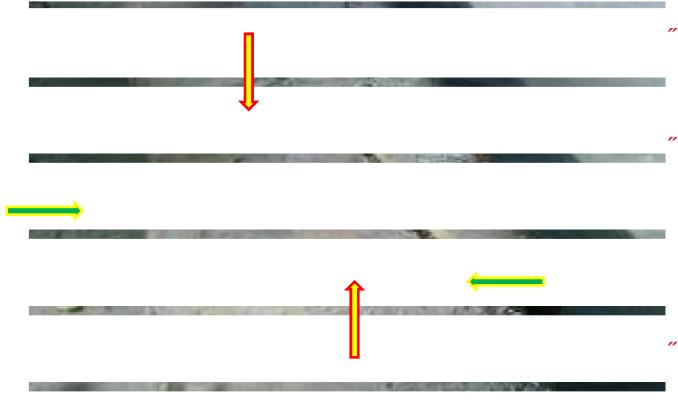
MBIE Research Project 2012 -2016 Opus Research & GNS

Project leader Rosslyn McLachlan (rosslyn.mclachlan@opus.co.nz)

Team member Mostafa Nayyerloo (mostafa.nayyerloo@opus.co.nz)

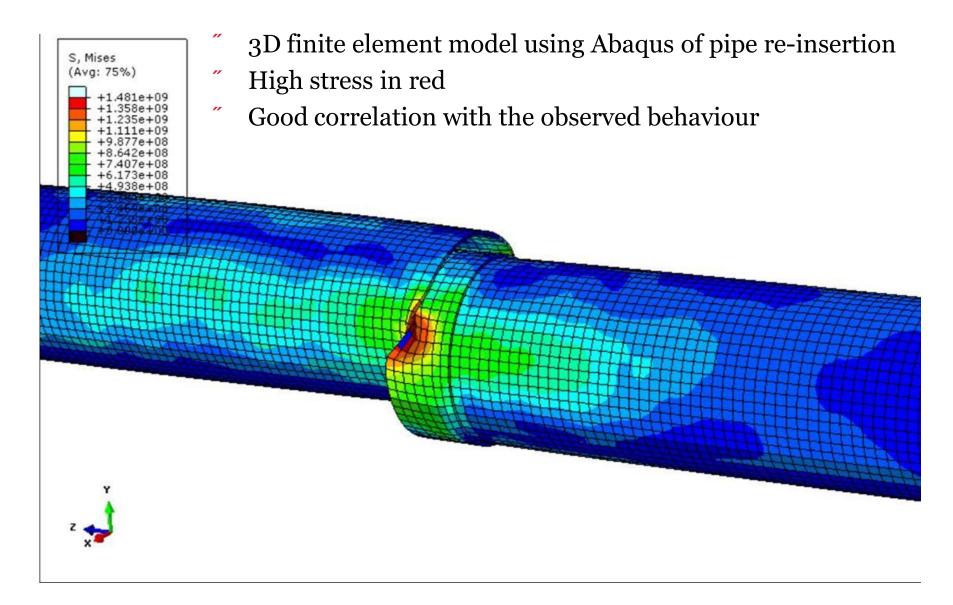

GIS: Pipe Renewals post earthquake and Peak Acceleration

Findings:


- Pipe renewals have been required both in and out of areas of high peak accelerations
- . Suggests that factors other than seismic shaking are causing pipes to fail

PE80 tested in tension

- *["]* Under quite large extensions the pipe is still serviceable
- " Service level reduced as is asset life


Field Observed Steel interpenetration

- Field observation of steel pipe
 - Used to develop finite element model to determine forces for this damage to occur
- Stresses and strains modelled

FE model of field observation

Research/practitioner clusters

Interdependencies Cluster

- . Michele Daly, GNS
- . Erica Seville, Res Orgs
- . Tony Fenwick
- . Garry MacDonald, Market Economics
- . Danielle Mieler, GNS
- . Dave Brunsdon
- ••••••
- ••••••

Water Networks Cluster

- . Mark Christison, CCC
- . Brian Park, WaterCare
- . Ros McLauchlan, Opus
- . Jim Cousins, GNS
- . Gary O'Meara, Capacity
- . Tim Davin, IPENZ
- . Christopher Munden, Civic Assurance
- . Nick Walmsley, Water NZ
- . Rod Cameron, SCIRT
- Gerard Cleary, Waimakariri
-

" Economics Cluster

- . Garry MacDonald
- . Tony Fenwick
-
- " Resilience into practice Cluster
 - . James Hughes
 - . Ljubica Mamula-Seadon
 -
- ["] Resilient Organisations
 - . Erica Seville
 - . John Vargo
 - . Suzanne Wilkinson
 -

.....

Key NZ Research Activities

- " Update from the Natural Hazards Research Platform
- *Economic Modelling Tony Fenwick*
- *["]* The Resilience of Ports Liam Wotherspoon, University of Auckland
- Projecting Damage and Losses for Building and Infrastructures from the Canterbury Earthquake Sequence - Sonia Giovinazzi, University of Canterbury
- *Earthquake-Flood Multi-hazard Impacts on Lifeline Systems Sonia Giovinazzi, University of Canterbury*
- *Resilience for Lifeline Utilities Erica Seville, Resilient Organisations*